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1. INTRODUCTION 
     The effect of thermal radiation on 

Magnetohydrodynamics (MHD) boundary layer flow has 

become important in several industrial, scientific and 

engineering fields. Due to sundry application of MHD as 

the design of heat exchangers, pumps and flow matters, 

in space vehicle propulsion, thermal protection, 

controlling the rate of cooling, controlling fusion etc, it’s 

become more important for the flow due to a stretching  

surface. This study finds application in industries such as 

melt spinning, extrusion, glass fiber production, the hot 

rolling, wire drawing, manufacture of plastic and rubber 

sheets, polymer sheet and filaments etc. It’s employed for 

copper, brass, bronze and aluminum and increasingly 

with cast iron and steel also. 

     Wang [1] investigate the problem of three 

dimensional fluid flows due to a stretching flat plate. Na 

and Pop [2] studied an unsteady flow past a stretching 

sheet. In the case of unsteady boundary layer flow, Sattar 

and Alam [3] presented unsteady free convection and 

mass transfer flow of a viscous, incompressible and 

electrically conducting fluid past a moving infinite 

vertical porous plate with thermal diffusion effect. 

     Jangid and Tomer [4] studied the effect of thermal 

radiation and magnetic field on unsteady stretching 

permeable sheet in presence of free stream velocity.  

 

 

 

 

 

 

     The technologies due to nanoparticles have been used 

over a large area. Choi [5] was the first author who 

studied nanoparticles. The analysis of convective 

instability and heat transfer characteristics of the 

nanofluids was investigated by Kang and Choi [6].    

     Recently; Khan and Pop [7] have showed the problem 

of laminar boundary layer flow of a nanofluid past a 

stretching sheet. The natural Convective Boundary layer 

Flow of a nanofluid past a Vertical Plate have studied by 

Kuznestov and Neild [8]. In this model Brownian motion 

and Thermophoresis are accounted with the simplest 

possible boundary conditions. 

     Hence our aim is to study unsteady boundary layer 

nanofluid flow over a stretching surface with the 

influence of magnetic and thermal radiation effect. 

Explicit finite difference method [9] has been used to 

solve the obtained non- similar equations. 
      

2. MATHEMATICAL MODEL OF FLOW 
     Considered the Cartesian coordinates x , measured 

along the stretching surface and y is the coordinate 

measured normal to the stretching surface. The physical 

configuration and coordinate system are shown in Fig 1. 

The flow takes place at .0y   An unsteady uniform 

stress leading to equal and opposite forces is applied 

along the x -axis, so that the sheet is stretched keeping 

the origin fixed. 

 

ABSTRACT      
Unsteady heat and mass flow of a nanofluid past a stretching sheet with thermal radiation in the presence of 

magnetic field is studied. To obtain non-similar equation, continuity, momentum, energy and concentration 

equations have been non-dimensionalised by usual transformation. The non-similar solutions are presented 

here which depends on the Magnetic parameter M , Radiation parameter R , Prandtl number rP , Eckert 

number cE , Lewis number eL , Brownian motion parameter bN  and Thermophoresis parameter tN  

respectively . The obtained equations have been solved by explicit finite difference method. The 

temperature and concentration profiles are discussed for the different values of the above parameters with 

different time steps. 

 

Keywords: Nanofluid, Magnetic Field, Radiation, Stretching Sheet. 

FINITE DIFFERENCE SOLUTION OF MHD RADIATIVE 

BOUNDARY LAYER FLOW OF A NANOFLUID PAST A 

STRETCHING SHEET 
 

Md. Shakhaoath Khan
1
, Md. Mahmud Alam

1
 and M. Ferdows

2 

 
1
Mathematics Discipline, Khulna University, Khulna-9208, Bangladesh 

2
Departments of Mathematics, University of Dhaka, Dhaka-1000, Bangladesh 



© ICME2011  FL-011 2 

 
 

Fig 1. Physical model and coordinates system. 
 

 

Initially it is assumed that fluid and the plate are at rest 

after that the plate is moved with a constant velocity 0U  

in its own plane. Instantaneously at time 0t > , 

temperature of the plate and species concentration are 

raised to  wT T  and  w
C C


  respectively, which 

are thereafter maintained constant, where
w

T , 
w

C  are 

temperature and species concentration at the wall and T

, 

C


 are temperature and species concentration far away 

from the plate respectively. A uniform magnetic field 0B  

is imposed to the plate. The magnetic induction vector 

0B  can be taken as  00, ,0B B . And  
rq  is radiative 

heat flux in the y-direction. Under the usual boundary 

layer approximation, the MHD unsteady nanofluid flow 

and heat and mass transfer with the radiation effect are 

governed by the following equations. 
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The Concentration equation 
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the initial and boundary conditions are 

w 0
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       everywhere 
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where   is the thermal diffusivity, k is the thermal 

conductivity,  
BD  is the brownian  diffusion coefficient, 

TD  is the thermophoresis diffusion coefficient, where, 

x  is the coordinate measured along stretching surface, 

wu  is the stretching velocity, U  is the uniform velocity. 

The Rosseland approximation [10] is expressed for 

radiative heat flux and leads to the form as, 
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where   is the Stefan-Boltzmann constant and  
*  is 

the mean absorption coefficient. The temperature 

difference with in the flow is sufficiently small such that 
4T  may be expressed as a linear function of the 

temperature, then the Taylor’s  series for 
4T  about T  

after neglecting higher order terms,  
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Introducing the following non dimensional variables, the 

equation (1) to (5) become,
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the non-dimensional boundary conditions are; 

0, 0, 0, 0, 0U V T C                 everywhere    (12)         

0, 0, 0, 0, 0U V T C                      at 0X   

         1, 0, 1, 1U V T C                        at 0Y      (13) 

         0, 0, 0, 0U V T C                     as Y   
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3. NUMERICAL PROCEDURE 
     In order to solve the non-similar unsteady coupled 

non-linear partial differential equations, the explicit 
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finite difference method has been used.  

 
Fig 2. Finite difference space grid. 

 

For this, a rectangular region of the flow field is chosen 

and the region is divided into a grid of lines parallel to X 

and Y axes, where X-axis is taken along the plate and 

Y-axis is normal to the plate. Here the plate of height 

 max 100X  is considered i.e. X varies from 0 to 100 and 

assumed  max 25Y   as corresponding to Y   i.e. Y 

varies from 0 to 25. There are  125m   and  125n   

grid spacing in the X and Y directions respectively as 

shown in Fig 2. It is assumed that X , Y  are constant 

mesh sizes along X and Y directions respectively and 

taken as follows, 

 0.8 0 100X X     and  0.2 0 25Y Y      

with the smaller time-step,  0.005  . 

     Let U  , V  , T   and C   denote the values of  U , V ,  

T  and C  at the end of a time-step respectively. Using 

the explicit finite difference approximation, the 

following appropriate set of finite difference equations 

are obtained as; 
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with initial and boundary conditions 
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Here the subscripts i  and j  designate the grid points 

with X  and Y  coordinates respectively and the 

superscript n represents a value of time, n    

where 0, 1, 2,....n   . Stability conditions and the 

convergence criteria are not shown for brevity. 

 

4. RESULTS AND DISCUSSION 
     In order to investigate the physical representation of 

the problem, the numerical values of temperature and 

species concentration within the boundary layer have 

been computed for different values of Magnetic 

parameter M , Radiation parameter R , Prandtl number 

Pr , Reynolds number Re , Eckert number 
cE , Lewis 

number Le , Brownian motion parameter  
b

N and 

Thermophoresis parameter 
t

N . To obtain the 

steady-state solutions of the computation, the calculation 

have been carried out up to non-dimensional time, 

5 to 80.   The temperature and concentration profiles 

doesn’t show any change after non-dimensional time, 

40   . Therefore the solution for  40   is steady-state 

solution. The graphical representations of the problem 

are showed in Comparison Figs 4, 6,8,10 and Figs 11-16. 

And these results have been compared with the published 

results of Khan and Pop [7] (see comparison figs 3, 5, 7, 

9). 

     Comparison Fig 3. shows the effects of Brownian 

parameter Nb and thermophoresis parameter Nt  on the 

temperature profile for Prandtl number 10Pr  , Lewis 

number 10Le  . For comparison with Fig 4, the values of 

radiation parameter R , magnetic parameter M , Eckert 

number
cE , stretching constant value b

a
 are considered 

zero. Then it is observed that, temperature increases as 

the thermophoresis parameter Nt

 

and the Brownian 

motion parameter Nb increases. Therefore qualitative 

agreement has been seen in these figures but not 

quantitative. 

     Comparison Fig 5. represents the concentration 

distribution for the different values of Nb  and 10Pr  , 

10Le  , 0.1Nt  , For comparison with Fig 6, the values 

of radiation parameter R , magnetic parameter M , 

Eckert number
cE , stretching constant value b

a
 are 

considered zero. Here the thickness of the boundary layer 

for the mass fraction function is found to be smaller than 

the thermal boundary layer thickness when 1Le   . The 

concentration profiles are decreases with increase in 

Brownian parameter Nb . Therefore qualitative 

agreement has been seen in these figures but not 

quantitative. 

Comparison Fig 7. represents the effects of Pr and Le  

on the temperature distribution for 0.5Nb  , and Nt 0.5 . 

For comparison with Fig 8, the values of radiation 

parameter R , magnetic parameter M , Eckert number
cE , 
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stretching constant value b

a
 are considered zero. The 

temperature profiles increases with increasing in both 

Prandtl number Pr and Lewis number Le . Therefore 

qualitative agreement has been seen in these figures but 

not quantitative.  

     Comparison Fig 9. represents the effects of Le  on the 

concentration profiles for 10Pr  , 0.1Nt   and 0.1Nb  . 

For comparison with Fig 10, the values of radiation 

parameter R , magnetic parameter M , Eckert number 

cE , stretching constant value b

a
 are considered zero. 

When Le  is increases, the concentration profiles 

decreases for several parameters. Therefore qualitative 

agreement has been seen in these figures but not 

quantitative.     

 

 

 

 
Comparison Fig 3.  Effect of Nb and Nt on temperature 

profiles for specified parameters. (Similar problem) 

 

Comparison Fig 4.  Steady-state ( 40 and 0.005    ) 

temperature profiles for different values of Nb and Nt. 

(Non-similar problem) 

 
 

Comparison Fig 5.  Effect of Nb on concentration profiles 

for specified parameters. (Similar problem) 
Comparison Fig 6.  Steady-state ( 40 and 0.005    ) 

concentration profiles for different values  of Nb. 

(Non-similar problem) 
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Comparison Fig7.  Effect of Pr and Le on temperature 

profiles for specified parameters. (Similar problem) 
Comparison Fig 8.  Steady-state ( 40 and 0.005    ) 

temperature profiles for different values of Pr and Le. 

(Non-similar problem) 

 

 

  
Comparison Fig 9. Effect of Le on concentration 

Profiles for specified parameters. (Similar problem) 
   Comparison Fig10.Steady-state  40 and 0.005     

   Concentration profiles for different values of Le.      

   (Non-similar problem) 

In Figs. 11–16 the dimensionless temperature and 

concentration distributions are plotted against Y 

respectively for the different time step and different 

values of parameters. In Figs. 11 and 12 the temperature 

and concentration profiles are plotted respectively for 

different values of Nb. Here concentration profiles are 

decreases with increase of Nb, while the reverse effects 

have been obtained for temperature profile.  

 

 

Dimensionless temperature distribution showed for 

different values of Prandtl number Pr in Fig. 13.  As Pr 

increases, the temperature decreases. And Fig. 14 shows 

the dimensionless concentration distribution for different 

values of Le.  Here the concentration profiles are 

decreases with increase in Le. 

     Figs. 15 and 16 show temperature gradually increases 

whereas the concentration decreases for increasing of R,   

 

 

 

 
 

Fig 11.  Temperature profiles for different values of Nb . 

 

    

 Fig 12.  Concentration profiles for different values of 

 Nb . 
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Fig 13.  Temperature profiles for different values of Pr . 

     

Fig 14. Concentration profiles for different values of 

 Le . 

  

 

Fig 15.  Temperature profiles for different values of R . 

    Fig 16.  Concentration profiles for different values of 

 R . 

 

5. CONCLUSIONS 
1. For increasing the Brownian and Thermophoresis 

parameter, temperature profiles increases whereas 

the concentration profiles decreases for increasing 

the Brownian parameter.  

2. Thermal boundary layer thickness decreases for 

increasing Prandtl number and concentration 

boundary layer thickness decreases for increasing 

Lewis number. 

3. The MHD and Radiation effect through the 

boundary layer for both temperature and 

concentration has a great impact on flow pattern. As 

the radiation parameter increases then the 

temperature gradually increases while the reverse 

effects seen for concentration profiles. 

4. A considerable comparison with Khan and Pop [7] 

has been showed.  
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7. NOMENCLATURE 

Symbol Meaning Unit 

u, v Velocity components (
-1ms ) 

  Kinematic viscosity (
2 -1m s ) 

  Density of fluid (
-3kgm ) 

   Dimensionless time  

U, V   Dimensionless velocity components  

T  Dimensionless temperature  

C  Dimensionless concentration   

rq  Radiative heat flux in the y-direction  

M  Magnetic Parameter  

R  Radiation parameter  

rP  Prandtl number  

cE  Eckert number  

e
L  Lewis Number  

bN  Brownian motion parameter  

tN  Thermophoresis parameter  
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